

Высокопрочные износостойкие, конструкционные и криогенные свариваемые стали

Уважаемые руководители компаний!

Вся история ПАО «ММК» – это история поиска ответов на различные вызовы времени, история создания и воплощения в металле новых, ранее не существовавших технологий.

Потенциал Магнитки прошел одно из самых серьезных испытаний в годы Великой Отечественной войны. Мы гордимся тем, что наши отцы и деды, зачинатели трудовых династий на Магнитогорском металлургическом комбинате, достойно ответили на вызов той военной поры. Страна нуждалась в броневом листе, и ММК, изначально созданный для производства «мирного» металла, в предельно сжатые сроки не просто перестроил производственный процесс, а совершил настоящий переворот в производстве качественных спецсталей, разработав технологию выплавки брони в больших мартеновских печах с основным подом. Эта наша «локальная» победа, по мнению историков, не только внесла неоценимую лепту в Великую Победу, но и предопределила дальнейшее развитие сильнейших в отрасли научно-технических и производственнотехнологических компетенций, которые сохраняются на ММК по сей день.

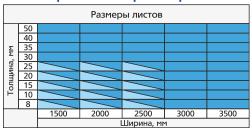
Сегодня экономика нашей страны стоит перед лицом очередного вызова, одним из ответов на который должно стать максимально возможное замещение импорта качественными продуктами российского производства. Поэтому ПАО «ММК» в настоящий момент активно реализует программу производства высокопрочных и износостойких марок сталей для обширных областей применения, среди которых изготовление и ремонт строительной, карьерной и прочей спецтехники, оборудования для переработки горных пород, оборудования для проходки шахт, нагруженных металлоконструкций и т.п. Эти марки стали мы группируем под брендом MAGSTRONG.

Мы постоянно работаем над расширением сортаментного ряда данных сталей с целью создания возможностей для российских предприятий любого уровня закрывать весь спектр потребностей в качественном высокопрочном и износостойком металлопрокате.

Учитывая специфику переработки высокопрочных и износостойких марок стали, мы готовы предоставить производственные мощности собственного механоремонтного комплекса - ООО «МРК» - для:

- выполнения специального раскроя высокопрочного листового проката по любой траектории реза (прямолинейная, криволинейная) плазменной резкой на машине термической резки с программным управлением для диапазона толщин от 2 до 40 мм, шириной до 4000 мм и длиной до 12000 мм;
- изготовления нестандартных изделий из высокопрочного проката с применением технологий гибки и штамповки, сварки и механической обработки (электроэрозионной обработки);
 - проектного сопровождения изготавливаемых изделий.

Уважаемые коллеги! ММК рад возможности пригласить Вас к сотрудничеству в рамках этого нового, инновационного направления.


//lline=

Применима для изготовления и ремонта:

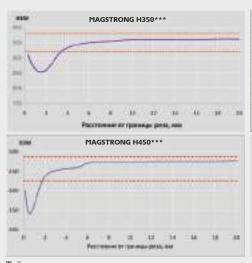
- навесного оборудования карьерной и горно-шахтной техники (ковши, отвалы, лопаты, челюсти скальные и т.д.)
- навесного оборудования строительной техники и дорожно-строительной техники
- кузовов карьерных самосвалов, самосвальных полуприцепов, мусоровозов, асфальтосмесителей, бетономешалок и т.д.
- манипуляторных перегружателейфутеровок приемных и дозирующих бункеров,
- конвейеров, питателей и шламопроводов т.д.
 элементов конструкций тягодутьевых машин для горячих газов, дымососов, вентиляторов
- самокантующихся вагонов и вагонеток

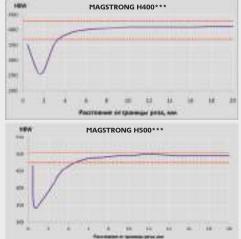
Геометрические размеры

Стандартный раскрой листа 2000 х 6000 мм.
По согласованию допускается поставка других размеров, длиной не менее 6000 мм.

В стадии освоения

Размеры листов										
6										
	1500	2000	2500	3000	3500					
		Ширина, мм								
- MAGSTRONG H350 H400 H450										
	- MA	GSTRONG H	1500							


Химический состав


Марка стали		Массовая доля элементов, не более, %													
тарка стали	С	Si	Mn	S	Р	Cr	Ni	Cu	Мо	٧	Al	Ti	Nb	N	В
MAGSTRONG H350 H400 H450	0.26	0.80	1.70	0.008	0.015	1.50	1.80	0.30	0.70	0.10	0.05	0.05	0.03	0.007	0.005
MAGSTRONG H500	0.30	0.20	0.85	0.005	0.012	0.50	3.20	0.35	0.40	0.035	0.05	0.01	0.01	0.008	0.005

Механические свойства

ТСХИПИЧСС	пехапические своиства					
Марка	стали	H350	H400	H450	H500	
Предел проч	ности, МПа	≥1050	≥1250	≥1400	≥1500	
Предел текучести, МПа		≥950	≥1000	≥1100	≥1200	
Относительное удлинение A ₅ , %		≥10	-	≥9	-	
Относительное удлинение A ₅₀ , %		-	≥12	≥12	≥10	
Ударная вязкості	ь, KCV ⁻⁴⁰ , Дж/см ²	≥30	≥30	≥30	≥30	
Твёрдост	ъ, HBW	310-380	370-430	420-470	475-505	
Изгиб	5 90°	min 3t	min 3t	min 3.5t	min 6t	
Углеродный	толщ. 8-20 мм	≤0.75	≤0.44**	≤0.45**	≤0.75	
эквивалент, (CEV)	толщ. 20.1-50 мм	≤0.75	≤0.45**	≤0.75	≤0.75 ^{до 25нм}	

^{** -} в стадии освоения

РЕЗКА

Способ резки	Ширина реза	Зона термического влияния (величина припуска)				
	мм					
Газовая	2 - 5	200*				
Плазменная	2 - 4	4**				
Гидроабразивная	1 - 3	0				

- * данные получены в лабораторных условиях ** данные получены при резке стали

Твёрдость в зоне термического влияния при плазменной резке ***

Рекомендуемое $\frac{R}{h}$ при изгибе на угол 90° с гарантией отсутствия трещин

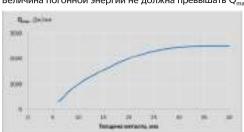
	min R/h									
h	Направление прокатки									
h, mm		Поп	ерёк		Вдоль					
	H350	H400	H450	H500	H350	H400	H450	H500		
< 8	4.0	4.0	4.0	6.0	4.0	4.0	4.0	6.0		
8 - 15	3.0	3.0	3.5	6.0	3.0	3.0	3.5	6.0		
15 - 20	3.0	3.0	4.0	6.0	3.0	3.0	4.0	6.0		
> 20	4.0	4.0	4.5	6.0	4.0	4.0	4.5	6.0		

Усилие гибки

$$P = \frac{1,6 \cdot B \cdot h^2 \cdot \sigma_B}{V}$$

ГИБКА

CBAPKA

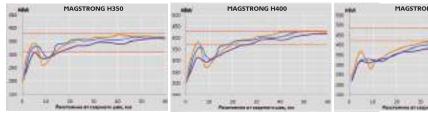

Предварительный нагрев


(рекомендуется)

3она	Максимальная	Рекомендуемая
нагрева	температура	температура
75 мм от сварного шва	200°C	75°C

Погонная энергия

Величина погонной энергии не должна превышать Q_{max} :


Сварочные материалы

О _{0,2,} МПа	Электродуговая сварка покрытым электродом	Полуавтоматическая сварка сплошной проволокой в среде защитного газа	Полуавтоматическая сварка порошковой проволокой	Аргонодуговая сварка неплавящимся электродом
400 —	MMA	MAG / MIG	FCAW	TIG
500 —	EN ISO 2560 E 46 FOCT 9467-350 FOCT 9467-355	EN ISO 14341 G 46 EN ISO 14341 G 42	EN ISO 17632 T 42 EN ISO 17632 T 46 FOCT 26271 FIF-44 FOCT 26271 FIF-49	EN ISO 636 W 46 EN ISO 636 W 42
	EN ISO 18275 E 55 EN ISO 2560 E 50 FOCT 9467-960	EN ISO 16834 G 55 EN ISO 14341 G 50	EN ISO 17632 T 50 FOCT 26271 FIF-54 FOCT 26271 FIF-59	EN ISO 16834 W 55 EN ISO 636 W 50
700 —	EN ISO 18275 E 69 EN ISO 18275 E 62	EN ISO 16834 G 69 EN ISO 16834 G 62	EN ISO 18276 T 62 FOCT 26271 FIF-64 FOCT 26271 FIF-69	EN ISO 16834 W 69 EN ISO 16834 W 62
	EN ISO 18275 T 79 FOCT 9467-385	EN ISO 16834 G 79	EN ISO 18276 T 79	EN ISO 16834 W 79
800 —	EN ISO 18275 T 89 FOCT 9467-9100	EN ISO 16834 G 89	EN ISO 18276 T 89	EN ISO 16834 W 89
900 —				

Типичные мех. свойства наплавленного металла на листах MAGSTRONG H350/H400/H450

Марк	a	Предел прочности, H/мм²	Предел текучести, H/мм²	Относительное удлинение, %	HBW
MagWire	MS500	≥810	≥770	≥4.0	≥270
MagWire	MS700	≥990	≥980	≥2.3	≥320

Зона термического влияния

с высокой вязкостью, способностью к холодному профилированию, а также хорошей свариваемостью

Применима для изготовления и ремонта:

- применима для изготовления и ремонта.

 деталей силового каркаса кузовов автомобилей (в т.ч. грузовых) лонжеронов, деталей рамы, рёбер жесткости

 конструкций мостов

- несущих конструкций различных сооружений
 стрел грузоподъемных механизмов и манипуляторов
- телескопических и шарнирно-сочленённых стрел
- телескопических и шарлирно-сочлененных стрел грузоподъёмных механизмов
 лонжеронов и рамных конструкций грузовых автомобилей и спецавтомобилей
 различных деталей грузовых автомобилей и спец-техники сложной формы полученной путём гибки
- ёмкостей для сыпучих грузов и автоцистерн
 лесовозов, самосвальных полуприцепов, кузовов
- мусоровозов • нагруженных сварных конструкций
- строительных конструкций холодногнутых профилей и труб

Геометрические размеры

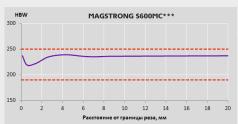
Длина листа 3 000 - 12 000 мм

В производстве с 2020г

Длина листа 3 000 - 12 000 мм

Химический состав

Марка стали		Массовая доля элементов, не более, %										
гарка стали	С	Si	Mn	S	Р	Nb	Мо	V	minAl	Ti	В	
MAGSTRONG S550MC	0.12	0.25	1.80	0.01	0.025	0.09	-	0.20	0.015	0.15	-	
MAGSTRONG S600MC	0.12	0.25	1.90	0.01	0.02	0.09	0.50	0.20	0.015	0.22	0.005	
MAGSTRONG S700MC	0.12	0.25	2.10	0.01	0.02	0.09	0.50	0.20	0.015	0.22	0.005	
MAGSTRONG S900MC*	0.20	0.25	2.20	0.01	0.02	0.09	1.00	0.20	0.015	2.50	0.005	


Механические свойства

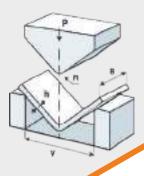
Trexamiliate control				
Марка стали	MAGSTRONG S550MC	MAGSTRONG S600MC	MAGSTRONG S700MC	MAGSTRONG S900MC*
Предел прочности, МПа	600-760	650-820	750-950	930-1200
Предел текучести, МПа	550-670	600-720	700-820	900-1020
Относительное удлинение A ₅ , %	≥14	≥13	≥12	≥8
Изгиб 180°	min 1,5t	min 1,5t	min 1,5t	min 8t

Допуски на прокат и качество поверхности

Допуски по стандарту EN 10029 (допуск на толщину по классу А, допуск на поверхность по классу N). * в производстве с 2020г

РЕЗКА

Способ резки	Ширина реза	Зона термического влияния (величина припуска)				
	MM					
Газовая	2 - 5	200*				
Плазменная	2 - 4	2**				
Гидроабразивная	1 - 3	0				


- * данные получены в лабораторных условиях
- ** данные получены при резке стали

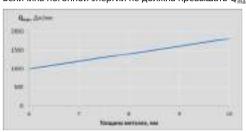
HBW	M	MAGSTRONG S700MC***							
320									
280									
200									
240									
200									
0 2	4 6	8	10 12	14	16	18	20		

Твёрдость в зоне термического влияния при плазменной резке ***

Рекомендуемое $\frac{R}{h}$ при изгибе на угол 90° с гарантией отсутствия трещин

b ww	min R/h								
		ŀ	Направлені	ие прокаткі	И				
h, mm		Поперёк			Вдоль				
	S550MC S600MC S700MC			S550MC	S600MC				
5 - 12	1.2	1.2	1.5	1.5	1.5	2.0			

ГИБКА


CBAPKA

Усилие гибки

$$P = \frac{1,6 \cdot B \cdot h^2 \cdot \sigma_B}{V}$$

Погонная энергия

Величина погонной энергии не должна превышать Q_{max} :

 U - напряжение, В
 TIG
 k=0,6

 V
 1 - ток, А
 MIG/MAG
 k=0,8

 V - скорость сварки, мм/сек
 MMA
 k=0,8

 MMA
 k=0,8

Сварочные материалы

О _{0,2,} МПа	Электродуговая сварка покрытым электродом	Полуавтоматическая сварка сплошной проволокой в среде защитного газа	Полуавтоматическая сварка порошковой проволокой	Аргонодуговая сварка неплавящимся электродом	
400	MMA	MAG / MIG	FCAW	TIG	
400 	EN ISO 2560 E 46 EN ISO 2560 E 42 FOCT 9467-355	EN ISO 14341 G 46 EN ISO 14341 G 42	EN ISO 17632 T 42 EN ISO 17632 T 46 FOCT 26271 FIT-49	EN ISO 636 W 46 EN ISO 636 W 42	
600 —	EN ISO 18275 E 55 EN ISO 2560 E 50 FOCT 9467-360	EN ISO 16834 G 55 EN ISO 14341 G 50	EN ISO 17632 T 50 EN ISO 18276 T 55 FOCT 26271 ПГ-59	EN ISO 16834 W 55 EN ISO 636 W 50	
700 —	EN ISO 18275 E 69 EN ISO 18275 E 62	EN ISO 16834 G 69 EN ISO 16834 G 62	EN ISO 18276 T 62 EN ISO 18276 T 69 FOCT 26271 FIF-69	EN ISO 16834 W 69 EN ISO 16834 W 62	
	EN ISO 18275 T 79 FOCT 9467-385	EN ISO 16834 G 79	EN ISO 18276 T 79	EN ISO 16834 W 79	
800 —	EN ISO 18275 T 89 FOCT 9467-9100	EN ISO 16834 G 89	EN ISO 18276 T 89	EN ISO 16834 W 89	
900 —					

Типичные механические свойства наплавленного металла

Марка	Предел прочности, Н/мм²	Предел текучести, Н/мм²	Относите- льное удлинение, %	КСV ⁺²⁰ , Дж/см²	КСV ⁻²⁰ , Дж/см²	КСV ^{-∞} , Дж/см²	КСV ⁻⁶⁰ , Дж/см²
MagWire MS450	≥529	≥441	≥20	≥150		≥47	
MagWire MS500	≥539	≥490	≥20	≥150		≥47	
MagWire MS700	764,4-940,8	≥686	≥17		≥69	≥59	≥39

Геометрические размеры

Стандартный раскрой листа 2000 х 6000 мм. По согласованию допускается поставка других размеров, длиной не менее 6000 мм.

В стадии освоения

			Pa	азмерь	і листо	В		
	60							
	80							
	100							
		1500	2000	2500	3000	3500	4500	4650
				Ш	ирина. і	мм		

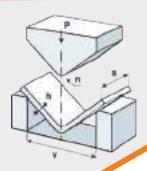
Химический состав

Марка стали	Массовая доля элементов, не более, %											
Парка стали	С	Si	Mn	S	Р	Cr	Cu	Nb	Мо	Al	Ni	N
MAGSTRONG W600QL W700QL W900QL	0.21	0.60	1.60	0.005	0.012	0.10	0.10	0.01	0.30	0.055	0.10	0.007

Механические свойства

пеханические своист	I Ва		
Марка стали	MAGSTRONG W600QL	MAGSTRONG W700QL	MAGSTRONG W900QL
Предел прочности, МПа	650-820	≥750-950	950-1150
Предел текучести, МПа	≥600	≥700	≥900
Относительное удлинение А ₅ , %	≥15	≥14	≥12
Ударная вязкость, КСV ⁻⁴⁰ , Дж/см ²	≥46	≥46	≥30
Изгиб 180°	min 1,5t	min 2t	min 2,5t
Углеродный эквивалент, (CEV)	≤0,53	≤0,53	≤0,53

РЕЗКА


Способ резки	Ширина реза	Зона термического влияния (величина припуска)		
		MM		
Газовая	2 - 5	200*		
1 0000001		200		
Плазменная	2 - 4	2**		

- данные получены в лабораторных условиях
- ** данные получены при резке стали

Твёрдость в зоне термического влияния при плазменной резке ***

Рекомендуемое $\frac{R}{h}$ при изгибе на угол 90° с гарантией отсутствия трещин

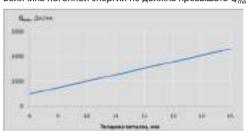
	min R/h							
h		ие прокатки						
h, mm	Поп	ерёк	Вдоль					
	W600QL	W700QL	W600QL	W700QL				
8 - 15	1.2	2.0	2.0	2.5				

ГИБКА

CBAPKA

Усилие гибки

$$P = \frac{1.6 \cdot B \cdot h^2 \cdot \sigma_B}{V}$$


Предварительный нагрев

Рекомендуется для толщин более 20мм при отрицательных температурах

3она	Рекомендуемая
нагрева	температура
75 мм от сварного шва	75 °C

Погонная энергия

Величина погонной энергии не должна превышать Q_{max} :

 $Q = \frac{V - \text{напряжение, B}}{V} \quad \begin{array}{c} U - \text{напряжение, B} \\ 1 - \text{ток, A} \\ V - \text{скорость сварки, мм/сек} \\ k - \text{КГЛД дуги} \end{array}$

TIG k=0,6 MIG/MAG k=0,8 MMA k=0,8

Сварочные материалы

	•									
О _{0,2,} МПа	Электродуговая сварка покрытым электродом		Полуавтоматическая сварка сплошной проволокой в среде защитного газа	Полуавтоматическая сварка порошковой проволокой	Аргонодуговая сварка неплавящимся электродом					
400	MMA		MAG / MIG	FCAW	TIG					
500 —	EN ISO 2560 E 46 EN ISO 2560 E 42	FOCT 9467-950 FOCT 9467-955	EN ISO 14341 G 46 EN ISO 14341 G 42	EN ISO 17632 T 42 EN ISO 17632 T 46 FOCT 26271 FIF-49	EN ISO 636 W 46 EN ISO 636 W 42					
600 —	EN ISO 18275 E 55 EN ISO 2560 E 50	ГОСТ 9467-360	EN ISO 16834 G 55 EN ISO 14341 G 50	EN ISO 17632 T 50 EN ISO 18276 T 55 FOCT 26271 FIF-59	EN ISO 16834 W 55 EN ISO 636 W 50					
700 —	EN ISO 18275 E 69 EN ISO 18275 E 62	FOCT 9467-970	EN ISO 16834 G 69 EN ISO 16834 G 62	EN ISO 18276 T 62 EN ISO 18276 T 69 FOCT 26271 ПГ-69	EN ISO 16834 W 69 EN ISO 16834 W 62					
800 —	EN ISO 18275 T 79	ГОСТ 9467-385	EN ISO 16834 G 79	EN ISO 18276 T 79	EN ISO 16834 W 79					
	EN ISO 18275 T 89	ГОСТ 9467-Э100	EN ISO 16834 G 89	EN ISO 18276 T 89	EN ISO 16834 W 89					
900 —										

Типичные механические свойства наплавленного металла

Марка	Предел прочности, Н/мм²	Предел текучести, Н/мм²	Относите- льное удлинение, %	КСV ⁺²⁰ , Дж/см²	КСV [∞] , Дж/см²	КСV [∞] , Дж/см²	КСV ⁻⁶⁰ , Дж/см²
MagWire MS450	≥529	≥441	≥20	≥150		≥47	
MagWire MS500	≥539	≥490	≥20	≥150		≥47	
MagWire MS700	764,4-940,8	≥686	≥17		≥69	≥59	≥39

- лесозаготовительной и деревоперерабатывающей техники

техники

• платформ и кузовов большегрузной карьерной и шахтопроходческой техники

• различных конструкций кранов

• нагруженных сварных конструкций

Применима в строительстве высотных зданий и сооружений, коммерческом строительстве

Геометрические размеры

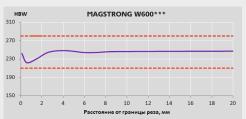
Ширина, мм Стандартный раскрой листа 2000 х 6000 мм. По согласованию допускается поставка других размеров, длиной не менее 6000 мм.

В стадии освоения

		Pa	азмерь	і листо	В		
60							
80							
1500 2000 2500 3000 3500 4500 4650							4650
			Ш	ирина, і	мм		

Химический состав

Марка стали		Массовая доля элементов, не более, %										
	С	Si	Mn	S	Р	Cr	Cu	Nb	Мо	Al	Ni	Ν
MAGSTRONG W600 W700 W900	0.10	0.40	0.75	0.005	0.012	0.55	0.50	0.04	0.38	0.05	1.90	0.007

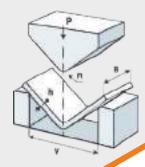

Механические свойства

Марка стали	MAGSTRONG W600	MAGSTRONG W700	MAGSTRONG W900
Предел прочности, МПа	650-820	≥750-950	950-1150
Предел текучести, МПа	≥600	≥700	≥900
Относительное удлинение А ₅ , %	≥15	≥14	≥12
Ударная вязкость, КСV ⁻⁷⁰ , Дж/см ²	≥50	≥50	≥50
Изгиб 180°	min 1,5t	min 2t	min 2,5t
Углеродный эквивалент, (CEV)	≤0,53	≤0,53	≤0,53

Допуски на прокат и качество поверхности

Допуски по стандарту EN 10029 (допуск на толщину по классу A, допуск на поверхность по классу N).

РЕЗКА


Способ резки	Ширина реза	Зона термического влияния (величина припуска)		
		MM		
Газовая	2 - 5	200*		
Плазменная	2 - 4	2**		
T INTOST TETTTON				

- данные получены в лабораторных условиях
- ** данные получены при резке стали

Твёрдость в зоне термического влияния при плазменной резке***

Рекомендуемое $\frac{R}{h}$ при изгибе на угол 90° с гарантией отсутствия трещин

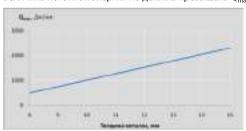
	min R/h										
h	Направление прокатки										
h, mm	Пог	ерёк	Вдоль								
	W600	W700	W600	W700							
8 - 15	1.2	2.0	2.0	2.5							

ГИБКА

CBAPKA

Усилие гибки

$$P = \frac{1.6 \cdot B \cdot h^2 \cdot \sigma_B}{V}$$


Предварительный нагрев

Рекомендуется для толщин более 20мм при отрицательных температурах

3она	Рекомендуемая
нагрева	температура
75 мм от сварного шва	75°C

Погонная энергия

Величина погонной энергии не должна превышать Q_{max} :

 $Q = \frac{k \cdot U \cdot I}{V} egin{array}{cccc} U - \text{ напряжение, B} & - & - & - \\ I - \text{ ток, A} & & V - \text{ скорость сварки, мм/сек} & V - \text{ кСПД дуги} \\ K - \text{ КПД дуги} & - & - & - & - \\ \end{array}$

TIG k=0,6 MIG/MAG k=0,8 MMA k=0,8

Сварочные материалы

О _{0,2,} МПа	Электродуговая сварка покрытым электродом		Полуавтоматическая сварка сплошной проволокой в среде защитного газа	Полуавтоматическая сварка порошковой проволокой	Аргонодуговая сварка неплавящимся электродом					
400	MMA		MAG / MIG	FCAW	TIG					
500 —	EN ISO 2560 E 46 EN ISO 2560 E 42	FOCT 9467-950 FOCT 9467-955	EN ISO 14341 G 46 EN ISO 14341 G 42	EN ISO 17632 Т 42 EN ISO 17632 Т 46 ГОСТ 26271 ПГ-44 ГОСТ 26271 ПГ-49	EN ISO 636 W 46 EN ISO 636 W 42					
600 —	EN ISO 18275 E 55 EN ISO 2560 E 50	ГОСТ 9467-360	EN ISO 16834 G 55 EN ISO 14341 G 50	EN ISO 17632 T 50 EN ISO 18276 T 55 FOCT 26271 FF-59	EN ISO 16834 W 55 EN ISO 636 W 50					
700 —	EN ISO 18275 E 69 EN ISO 18275 E 62	FOCT 9467-970	EN ISO 16834 G 69 EN ISO 16834 G 62	EN ISO 18276 T 62 EN ISO 18276 T 69 FOCT 26271 FIF-69	EN ISO 16834 W 69 EN ISO 16834 W 62					
800 —	EN ISO 18275 T 79	ГОСТ 9467-385	EN ISO 16834 G 79	EN ISO 18276 T 79	EN ISO 16834 W 79					
900 —	EN ISO 18275 T 89	FOCT 9467-9100	EN ISO 16834 G 89	EN ISO 18276 T 89	EN ISO 16834 W 89					
900										

Типичные механические свойства наплавленного металла

Марка	Предел прочности, Н/мм²	Предел текучести, Н/мм²	Относите- льное удлинение, %	КСV ⁺²⁰ , Дж/см²	КСV [∞] , Дж/см²	КСV [∞] , Дж/см²	КСV ⁻⁶⁰ , Дж/см²
MagWire MS450	≥529	≥441	≥20	≥150		≥47	
MagWire MS500	≥539	≥490	≥20	≥150		≥47	
MagWire MS700	764,4-940,8	≥686	≥17		≥69	≥59	≥39

- диски пильные

Геометрические размеры

Длина листа 3 000 - 12 000 мм

В производстве с 2020г

_	2 116 2112 5 H 21 1 2 2 1 1 2 2 1										
	Размеры листов										
	4										
	3										
	2,5										
	2										
	1,5										
		1000	1100	1200	1300	1400	1500				
		Ширина, мм									

Длина листа 3 000 - 12 000 мм

- Горячекатаная - Холоднокатаная

Химический состав

Марка стали		Массовая доля элементов, не более, %										
	С	Si	Mn	S	Р	Nb	Мо	٧	AI	Ti	В	Cr
MAGSTRONG AGRO22	0.25	0.40	1 40	0.005	0.025	-	0.35	-	0.06	0.05	0.005	0.35
MAGSTRONG AGRO33	0.35	0.35	1,50	0.003	0.015	0.01	0.20	0.02	0.045	0.05	0.006	0.20

Механические свойства (в состоянии поставки)

Марка стали	MAGSTRONG AGRO22	MAGSTRONG AGRO33		
Предел прочности, МПа	≥520	≥540		
Предел текучести, МПа	≥330	≥350		
Относительное удлинение A ₅ , %	≥22	≥20		
Бал зерна феррита	≤9	≤7		

Механические свойства после закалки (типичные)

Марка стали	MAGSTRON	NG AGRO22	MAGSTRONG AGRO33							
Температура закалки 950°C	в воде	в масле	в воде	в масле						
Предел прочности, МПа	1500	1150	1800	1500						
Предел текучести, МПа	1100	950	1240	1030						
Относительное удлинение, %	10	11	7	8						
Твердость, HBW	460	370	565	460						

Химический состав

	Массовая доля элементов, не более, %										
С	C Si Mn S P Ni Cu Mo Al Ti Nb										
0.10	0.10 0.35 0.60 0.003 0.010 10.0 0.2 0.2 0.05 0.03 0.04										

Механические свойства

Предел прочности, МПа	≥480
Предел текучести, МПа	≥640
Относительное удлинение A ₅ , %	≥18
Ударная вязкость, КСV ⁻¹⁷⁰ , Дж/см ²	≥75
Ударная вязкость, КСV ⁻¹⁹⁶ , Дж/см ²	≥60
Изгиб до параллельности сторон	2t

Геометрические размеры

В стадии освоения

Длина листа 3 000 - 12 000 мм

Геометрические размеры

Диаметр проволоки							
MagWire MS450							
MagWire MS500							
MagWire MS700							
	0.8	1.0	1.2	1.6			

-освоенный диаметр проволоки

Возможно изготовление других диаметров по запросу потребителя

Химический состав проволоки

•											
Массовая доля элементов, не более, %											
Марка	С	Si	Mn	Cr	Ni	٧	Мо	S	Ti	Р	N
MagWire MS450	0.10	0.40	1.00	0.30	0.85	-	1.05	0.010	-	0.012	-
MagWire MS500	0.80	0.30	1.1	0.50	0.70	-	0.70	0.015	0.003	0.008	-
MagWire MS700	0.10	0.70	1.80	0.40	1.60	0.10	0.30	0.015	0.015	0.015	0.01

РЕКОМЕНДАЦИИ ПО СВАРКЕ

MAGWIRE

Параметры режимов сварки проволоки MAGWIRE

Марка проволоки	Диаметр, мм	Ток, А	Напряжение,В	Род тока	Полярность тока	Защитная среда
MAGWIRE	1.2	150-230	18.4-25.0			
MS500	1.6	170-358	17.5-33.6		Обратная	80%Ar + 20%CO
MAGWIRE	1.2	140-300	18.0-31.2	Постоянный		
MS500	1.6	158-349	16.9-33.3	импини	Ооратная	8070AI + 2070CO
MAGWIRE	1.2	160-300	18.6-31.2			
MS700	1.6	182-381	18.3-34.3			

Типичные механические свойства для наплавленного металла

Сварочная проволока	Марка стали	Предел прочности, Н/мм²	Предел текучести, Н/мм²	Относительное удлинение, %	КСV ⁺²⁰ , Дж/см²	КСV ⁻²⁰ , Дж/см²	КСV ⁻⁴⁰ , Дж/см²	КСV ⁻⁶⁰ , Дж/см²	HBW
MAGWIRE MS500	MAGSTRONG H350	≥810	≥770	≥4.0					≥290
MAGWIRE MS700	H400 H450	≥990	≥980	≥2.3					≥320
MAGWIRE MS450	MAGSTRONG S550	≥529	≥441	≥20	≥150		≥47		
MAGWIRE MS500	\$600 \$700 W600 W600QL	≥539	≥490	≥20	≥150		≥47		
MAGWIRE MS700	W700 W700QL W900 W900QL	764,4-940,8	≥686	≥17		≥69	≥59	≥39	

Механические свойства наплавленного металла зависят от способа сварки и применяемой защитной среды. Механические свойства наплавленного металла в исходном состоянии после сварки в смеси M21 по ISO 14175 должны удовлетворять требованиям

ОАО ММК-МЕТИЗ
Челябинская область
455002, г. Магнитогорск
ул. Метизников, 5

www.mmk-metiz.ru

Технические консультанты:

e-mail:yazvenko.am@mmk-metiz.ru тел. 8(3519) 24-20-95

e-mail:Bakaev.DR@mmk-metiz.ru тел. 8(3519) 25-81-15

По вопросам приобретения:

e-mail:Antonyuk.VV@mmk-metiz.ru тел. 8(3519) 24-77-25 24-70-39 моб.тел. +7 904 818 07 97

Центральный и Северо-Западный ФО

ООО «Торговый дом ММК» (г.Москва) Телефон (495) 786-80-60 ООО «Торговый дом ММК» (г.С.-Пб.) Телефон (812) 449-01-03 ООО «Торговый дом ММК» (г.Воронеж) Телефон (473) 233-37-46 ООО «Торговый дом ММК» (г.Тула) Телефон (4872) 70-09-94 ООО «Торговый дом ММК» (г.Рязань) Телефон (4912) 46-51-94 ООО «Торговый дом ММК» (г. Ярославль)

Приволжский и Южный ФО

Телефон (4852) 28-09-95

ООО «Торговый дом ММК» (г.Самара) Телефон (846) 205-02-27 ООО «Торговый дом ММК» (г.Нижний Новгород) Телефон (831) 269-35-78 ООО «Торговый дом ММК» (г.Казань) Телефон (843) 514-61-00

ООО «Торговый дом ММК» (г.Набережные Челны) Телефон (8552) 91-07-90 ООО «Торговый дом ММК» (г.Пенза) Телефон (8412) 458-100 ООО «Торговый дом ММК» (г.Краснодар) Телефон (861) 200-28-49 ООО «Торговый дом ММК» (г.Ростов-на-Дону) Телефон (863) 303-00-24 ООО «Торговый дом ММК» (г.Волгоград) Телефон (8442) 26-21-40

Уральский и Сибирский ФО

ООО «Торговый Дом ММК» (г. Магнитогорск) Телефон (3519) 24-74-14 ООО «Торговый Дом ММК» (г.Челябинск) Телефон (351) 796-58-34 ООО «Торговый Дом ММК» (г. Уфа) Телефон (347) 293-01-33 ООО «Торговый Дом ММК» (г.Екатеринбург) Телефон (343) 383-14-94

ООО «Торговый Дом ММК» (г.Тюмень) Телефон (3452) 69-47-28 ООО «Торговый Дом ММК» (г.Сургут) Телефон (3462) 23-61-90 ООО «Торговый Дом ММК» (г.Пермь) Телефон (342) 238-74-19 ООО «Торговый дом ММК» (г.Новосибирск) Телефон (383) 319-01-00 ООО «Торговый дом ММК» (г.Кемерово) Телефон (3842) 57-02-47 ООО «Торговый дом ММК» (г. Красноярск) Телефон (391) 268-30-46 ООО «Торговый дом ММК» (г.Омск) Телефон (3812) 90-63-50 ООО «Торговый дом ММК» (г.Барнаул) Телефон (3852) 29-96-20 ООО «Торговый дом ММК» (г.Иркутск) Телефон (3952) 48-62-21 ООО «Торговый дом ММК» (г. Новокузнецк) Телефон (3843) 99-40-34

Дальневосточный ФО

ООО «Торговый дом ММК» (г.Владивосток) Телефон (423) 205-00-32 ООО «Торговый дом ММК» (г. Хабаровск) Телефон (4212) 64-67-73

Казахстан ТОО «Торговый дом ММК-Казахстан» (г.Нур-Султан) Телефон (7172) 268-268 ТОО «Торговый дом ММК-Казахстан» (г. Алматы) Телефон (727) 221-27-65 ТОО «Торговый дом ММК-Казахстан» (г.Караганда) Телефон (7212) 901-999 ТОО «Торговый дом ММК-Казахстан» (г.Павлодар) Телефон (7182) 74-24-24 ТОО «Торговый дом ММК-Казахстан» (г.Шымкент) Телефон (7252) 61-10-17 ТОО «Торговый дом ММК-Казахстан» (г. Экибастуз) Телефон (7187) 75-10-18

Услуги по переработке сталей MAGSTRONG от OOO «Механоремонтный комплекс»

ПРОЕКТИРОВАНИЕ

ФРЕЗЕРОВКА

ГИБКА, ВАЛЬЦОВКА

РЕЗКА ГАЗОПЛАМЕННАЯ И ПЛАЗМЕННАЯ

СВАРКА КОНСТРУКЦИЙ

ДРОБЕОЧИСТКА

ООО МРК Челябинская область 455000, г. Магнитогорск ул. Кирова, 93

www.mrk.mmk.ru

МЕХАНОРЕМОНТНЫЙ КОМПЛЕКС

e-mail:sabirova.lr@mrk.mmk.ru тел. 8(3519) 24-95-85

e-mail:tkachev.vy@mrk.mmk.ru тел. 8(3519) 24-07-34

Центр информационной поддержки клиентов тел. 8-800-775-000-5

Услуги по переработке сталей MAGSTRONG от ООО «Объединенная сервисная компания»

РЕЗКА ГАЗОПЛАМЕННАЯ И ПЛАЗМЕННАЯ

СВАРКА КОНСТРУКЦИЙ

ГИБКА, ВАЛЬЦОВКА

ДРОБЕОЧИСТКА

ООО ОСК Челябинская область 455019, г. Магнитогорск ул. Кирова, 93

www.usc-service.ru

e-mail:Chernov.DA@usc-service.ru тел. 8(3519) 25-26-68

Услуги по переработке сталей MAGSTRONG от ЗАО «Лысьвенский металлургический завод»

ПРОЕКТИРОВАНИЕ

ФРЕЗЕРОВКА

ДРОБЕОЧИСТКА

РЕЗКА ГАЗОПЛАМЕННАЯ И ПЛАЗМЕННАЯ

СВАРКА КОНСТРУКЦИЙ

ЗАО «ЛМЗ» Пермский край 618900, г. Лысьва ул. Металлистов, 1

www.lysvamk.ru

e-mail: chernyshov_ia@lmz.lysvamk.ru тел. 8(34249) 9-27-92

e-mail: korolev@lmz.lysvamk.ru тел. 8(34249) 9-24-75

	3 A	M		
134	3A			K
				1 7

Стали MAGSTRONG

	Сортамент Механические свойства (не менее))				
Nº ⊓/r	Manua cranu	нд	Толщи-	Ширина,	Твердо-	Ударная і Джл	вязкость,	Предел текуче-	Предел прочно-	Удлине-	Углеродный эквивалент,	Изгиб, t	
			на, мм	MM	сть, HBW*	KCV ⁻⁷⁰	KCV ⁻⁴⁰	сти, МПа	сти,МПа	ние, А₅ %	CEV		
	I. Высокотвер для дорожно шламопровод	-строительн				робильной, сельсі	кохозяйственной	техники и эл	ементов кон	іструкции дь	ымососов,		
1.	MAGSTRONG H350	TC 14-101-1034	8 - 50	1500-3500	310-380		30	950	1050	10	≤0,75 ^{8-50 мм}	3t (90°)	
2.	MAGSTRONG H400	TC 14-101-1034	8 - 50	1500-3500	370-430		30	1000	1250	12 (A ₅₀)	≤0,44 ^{8-20 мм**} ≤0,45 ^{20,1-50 мм**}	3t (90°)	
3.	MAGSTRONG H450	TC 14-101-1034	8 - 50	1500-3500	420-470		30	1100	1400	9	≤0,45 ^{8-20 мм**} ≤0,75 ^{20,1-50 мм**}	3,5t (90°)	
4.	MAGSTRONG H500	TC 14-101-1058	8 - 25	1500-2500	475-505		30	1200	1500	10 (A ₅₀)	≤0,75 ^{8-25 мм}	6t (90°)	
						в <mark>акалку в воде и</mark> лки, рыхлители, ж		нековые подт	ьемники)				
_		CTO MMK 328-2017	5 - 12	1000-1500			·	330	520	22			
			е значения п в масле	ри закалке	370			950	1150	11			
1.	MAGSTRONG AGRO 22 (22MnB5)	Типичные	е значения г в воде	іри закалке	450			1100	1500	10			
	(22111103)	Лист Г/К	2,5-4,9**	1000-1500	В производо	стве с 2020 г.							
		CTO MMK 328-2017	5 - 12	1000-1500				350	540	20			
		Типичные	значения п в масле	ри закалке	460			1030	1500	8			
2.	MAGSTRONG AGRO 33	Типичные	е значения г в воде	іри закалке	565			1240	1800	7			
	(33MnB5)	Лист Г/К	2,5-4,9**	1000-1500	В производо	В производстве с 2020 г.							
		Лист Х/К	1,5-2,4**	1000-1100	В производо	стве с 2020 г.							
	III. Высокопро для кранового					й техники, манипу.	пяторной техникі	и, несущих ко	энструкций,	ёмкостей сь	пучих грузоі	3,	
	нагруженных	сварных кон		1			40	T	500 700			1,5t	
1.	MAGSTRONG S550MC	CTO MMK 324-2016	5 - 12	1000-1500	D	2020	40	550-670	600-720	20		(180°)	
			2,5-4,9**	1000-1200	в производо	стве с 2020 г.		500 700				1,5t	
2.	MAGSTRONG S600MC	CTO MMK 324-2016	5 - 12	1000-1500	_		40	600-720	650-770	18		(180°)	
			2,5-4,9**	1000-1200	В производо	стве с 2020 г.		T	l	I	I	1,5t	
3.	MAGSTRONG S700MC	CTO MMK 324-2016	5 - 12	1000-1500	_		40	700-820	750-950	17		(180°)	
_	MAGSTRONG	CTO MMK	2,5-4,9**	1000-1200		стве с 2020 г.		1	I	1		8t	
4.	S900MC**	324-2016 CTO MMK	5 - 12	1000-1500	В производо	стве с 2020 г.	40	900-1020	930-1200	8		(180°) 1,5t	
5.	W600QL	324-2016	8 - 50	1500-4650			46	600	650-820	15	≤0,53	(180°)	
6.	W700QL MAGSTRONG	324-2016	8 - 50	1500-4650			46	700	750-950	14	≤0,53	2t (180°)	
7.	W900QL MAGSTRONG	CTO MMK 324-2016 CTO MMK	8 - 40	1500-4650			30	900	950-1150	12	≤0,53	2,5t (180° 1,5t	
8.	W600	324-2016	8 - 50	1500-4650		50		600	650-820	15	≤0,53	(180°)	
9.	MAGSTRONG W700	324-2016	8 - 50	1500-4650		50		700	750-950	14	≤0,53	2t (180°)	
10.	VV900	CTO MMK 324-2016	8 - 20	1500-4650		50		900	950-1150	12	≤0,53	2,5t (180°)	
		ого оборуд	ования (хра	нилищ, резе		икостей, трубопро	оводов и т .д.), же	лезнодорож	ных цистерн	н, элементог	в криогенно	-0	
	оборудования MAGSTRONG		в теплообме 8 - 50	енников, уст 1500-3500	ановок газс	разделения т <u>.д.</u> 75 ^{ксу-170}	60 ^{KCV-196}	480	640	18		2t (260°)	
1.	CDV (O CENTIC	TY 14-1082-2016	1		В производо	I стве с 2020 г.		1	I	I		(360°)	
	1			1									

Сварочная проволока MAGWIRE

Типичные механические свойства для наплавленного металла

	IIDIG III		CGITTIC	aboria.		· · · · · · · · · · · · · · · · · · ·	d D T T G T T T		
Сварочная проволока	Марка стали	Предел прочности, Н/мм²	Предел текучести, Н/мм²	Относительное удлинение, %	КСV ⁺²⁰ , Дж/см²	КСV ⁻²⁰ , Дж/см²	КСV ⁻⁴⁰ , Дж/см²	КСV ^{-∞} , Дж/см²	HBW
MAGWIRE MS500	MAGSTRONG H350	≥810	≥770	≥4.0					≥290
MAGWIRE MS700	H400 H450	≥990	≥980	≥2.3					≥320
MAGWIRE MS450	MAGSTRONG S550	≥529	≥441	≥20	≥150		≥47		
MAGWIRE MS500	\$600 \$700 W600 W600QL	≥539	≥490	≥20	≥150		≥47		
MAGWIRE MS700	W700 W700QL W900 W900QL	764,4-940,8	≥686	≥17		≥69	≥59	≥39	

- Примечание:
 твердость по Бринеллю определяется на механически обработанной поверхности на глубине 0.5-3 мм ниже поверхности листа
- в стадии освоения